这种缩放规则来源于对抗性机器学习(adversarial ML)的相关文献,并产生了一个欧几里得期望幅度约为 的随机向量。算法 1 详细描述了我们的方法。
NEFTune的成功指出了算法和正则化在LLM训练中常被忽视的重要性。与已经研究了多年正则化和过拟合的计算机视觉社区不同,LLM社区倾向于使用旨在优化器稳定性的标准化训练循环,而不是泛化。在这种环境中,LLM研究人员已经将数据集和模型扩展作为前进的主要途径。鉴于NEFTune的持续收益以及在小指令数据集上过度拟合的趋势,似乎在LLM环境中重新审视正则化是值得的。
我们的研究有几个局限性。我们将AlpacaEval作为LLM指令跟随能力的核心衡量标准,这受到单个裁判(GPT-4)的偏见。此外,由于计算资源有限,我们无法在多个数据集上验证NEFTune在70B变体上的成功,并且大多数NEFTune运行必须依赖于固定的超参数而不是扫描。最后,尽管我们进行了实证研究,但我们并没有对NEFTune为何有效有一个明确的了解。